Comparative Study of Type-2 Fuzzy Particle Swarm, Bee Colony and Bat Algorithms in Optimization of Fuzzy Controllers

نویسندگان

  • Frumen Olivas
  • Leticia Amador-Angulo
  • Jonathan Pérez
  • Camilo Caraveo
  • Fevrier Valdez
  • Oscar Castillo
چکیده

In this paper, a comparison among Particle swarm optimization (PSO), Bee Colony Optimization (BCO) and the Bat Algorithm (BA) is presented. In addition, a modification to the main parameters of each algorithm through an interval type-2 fuzzy logic system is presented. The main aim of using interval type-2 fuzzy systems is providing dynamic parameter adaptation to the algorithms. These algorithms (original and modified versions) are compared with the design of fuzzy systems used for controlling the trajectory of an autonomous mobile robot. Simulation results reveal that PSO algorithm outperforms the results of the BCO and BA algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Thorough Comparative Analysis of PI and Sliding Mode Controllers in Permanent Magnet Synchronous Motor Drive Based on Optimization Algorithms

In this paper, the speed tracking for permanent magnet synchronous motor (PMSM) in field oriented control (FOC) method is investigated using linear proportional-integral (PI) controller, sliding mode controller (SMC) and its advanced counterparts. The advanced SMCs considered in this paper are fuzzy SMC (FSMC) and sliding mode controller with time-varying switching gain (SMC+TG) which can effec...

متن کامل

A review on interval type-2 fuzzy logic applications in intelligent control

A review of the applications of interval type-2 fuzzy logic in intelligent control has been considered in this paper. The fundamental focus of the paper is based on the basic reasons for using type-2 fuzzy controllers for different areas of application. Recently, bio-inspired methods have emerged as powerful optimization algorithms for solving complex problems. In the case of designing type-2 f...

متن کامل

Integrated Well Placement and Completion Optimization using Heuristic Algorithms: A Case Study of an Iranian Carbonate Formation

Determination of optimum location for drilling a new well not only requires engineering judgments but also consumes excessive computational time. Additionally, availability of many physical constraints such as the well length, trajectory, and completion type and the numerous affecting parameters including, well type, well numbers, well-control variables prompt that the optimization approaches b...

متن کامل

Fuzzy Controller Design Using Evolutionary Techniques for Twin Rotor MIMO System: A Comparative Study

This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system (TRMS) considering most promising evolutionary techniques. These are gravitational search algorithm (GSA), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). In this study, the gains of four fuzzy proportional derivative (PD) c...

متن کامل

Particle Swarm Optimization and Artificial Bee Colony Approaches to Optimize of Single Input-output Fuzzy Membership Functions

Determination of the fuzzy membership functions in a given fuzzy logic system is the key factor for resulting in the best performance. Thus, in this study, particle swarm optimization (PSO) and artificial bee colony (ABC), relatively new member of swarm intelligence, are used to adjust the shape of fuzzy membership functions, respectively. Proposed methods have been implemented and compared for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Algorithms

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017